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AbStraCL 
measuremenls lhal ahibit a spread larger lhan apected on the basis of lheir statistical 
ermm Monte Carlo simulations are used lo 1st how well the methods perform. 
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1. Introduction 

&jipei-;merria; ir,eajiiiemenij aie io two of eiioij, aai&iai an; 
systematic. The former arise from fluctuations in finite data samples and from lim- 
ited resolution of measurement devices. They are such that the average of a large 
number of repeated measurements should tend to the correct value. On the other 
hand systematic errors are potential sources of bias, arising, for example, from incor- 
rectly calibrated instruments, samples contaminated by background, external effects 
not taken into account, inadequate theories, etc. It is a general feature of error esti- 
mation that the contribution from statistical effects is relatively easy to obtain, while 
systematic errors tend to be assessed in a much more subjective manner. 

One approach to investigating systematic effects is to calculate the quantity of 
interest I in several different ways, and to see how much scatter there is among the 
various answers x i .  Thus, for example, different selection criteria or cuts could be 
used to obtain samples from which the I; are determined. Alternatively the identical 
data could be used, but analysed in several different methods. Yet another possibility 
is that there could be several variants of the theory with which the data are compared 
in order to extract x. 

In this paper, we discuss the problem of deriving a numerical estimate of the 
systematic error from several estimates of the same quantity. Monte Carlo tests on 
the reliability of the suggested procedures are presented. 

The methods we describe could also be applied to the problem of extracting the 
best value and its error &om several different experimental measurements of the 
Same quantity, in the situation where the scatter of the measurements is larger than 
expected from the quoted errors (and hence some source of bias in the quoted results 
may be suspected). 

The methods discussed here are applicable only to those forms of bias which are 
distributed with zero mean, and which vary from measurement to measurement. Any 
bias which is common to the separate results would escape detection by repeated 
measurement. However, the methods we describe can readily be extended to the 
situation of correlated statistical errors, such as arise from overlapping data samples, 
or from different analysis techniques applied to the Same data (see [l]). 
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2. Techniques for estimating bias 

21. Two measurements 

We assume that we have two measurements zl f u1 and z2 f uz with unwrrelated 
errors. In the absence of systematic effects, the expected (RMS) difference between 
the measurements is ,/m. 

The effect of systematics is to shift the measurements by some unknown amount. 
We assume that the shift in each result can be regarded as being derived from 
a distribution of mean zero and RMS width s. We furthermore assume that the 
passible biases on the two measurements are unwrrelated. This may well not be 
true. However if they were completely correlated, the two measurements would be 
shifted in the same sense, and this approach of looking for differences in the zi 
would break down. 

Since the systematic and the statistical errors on a iven measurement are certainly 
uncorrelated, the total error on each zi is e U? + s2, and so, in the presence of 
statistical and systematic errors of the type discussed in the previous paragraph, the 
expected difference in measurements becomes d(u; + s2) + (U: + 9). If we set 
this equal to the observed difference, we obtain our estimate 

Because of statistical fluctuations, Itl - z21 can be smaller than d m .  In 
that case, one would conclude that there is no evidence for any systematic effect. This 
in fact will result in a small bias when the true value of s is small; if our estimates 
of s2 are larger than the true value we accept them, while for smaller values we are 
likely to set our estimate to zero. 

An alternative is to assume that the effect of systematic errors is to increase the 
statistical error by a factor K 2 1. Then the expected difference becomes K-, 
and so our estimate of K is 

Then n > 1 is a measure of any systematic effects. In analogy with the previous 
example, if our estimate K < 1, we would assume there were no systematic effects. 

22. Several measurements 

We now extend the discussion of section 21 to the case of several measurements 
zi f ui with uncorrelated errors. Again the bias is assumed to be distributed with 
mean zero and RMs S, and to be uncorrelated between measurements. We discuss 
four different approaches for estimating s. 

22.1. The xz nielhod. If we assume that the distribution of bias values is not too 
different from normal, we can define a xz for the measurements to be consistent with 
a single value 5: 
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where 2 is chosen to minimize the x2 for a given s i.e. 

For N measurements, the expected value of x2 is N - 1, and so we determine s 
as that value which results in 

where i: is a function of s (see (4)). The value of s that satisfies (5) we obtain 
numerically. This is our estimate of the systematic error. The statistical error we. 
obtain in the usual way as {E 1/~ . ,? ) - ’ /~ .  

For the case where s is large compared with all the U;, equation (5) gives us our 
estimate of sz as E( zi - i)*/( N - l ) ,  with i: being the ordinary unweighted average 
of the zi. Thus when systematic errors dominate over statistical ones, s is estimated 
simply as the RMS of the observed zi values. 

In analogy with section 2.1, here we can also adopt the alternative of considering 
that the effect of systematics is to multiply all statistical errors by a factor ti. In this 
case, 

i: = { z; / K Z U ? }  / { 1 /.’U,’} 

and hence is independent of ti. The value of ti is determined analytically from 

( X i  - ?)* 
= N - l  (7) 

As discussed in section 2.1, we would probably not allow s2 < 0 or ti < 1. 
It is easy to check that, for the case where N = 2, equations (5) or (7) give the 

same value for s or ti as obtained from (1) or (2). 
We can obtain error estimates for s or K as follows. Even when theory and 

experiment are in agreement, x2 need not be exactly N-1. Indeed the xz distribution 
has RMS width of d m .  Thus for N not too small, we can obtain upper and 
lower error estimates for s from 

(and similarly for K). For small values of N, it is better to choose values of xz which 
correspond to appropriate values (16 and 84%) of the integrated area under the xZ 
distribution. For small N, the magnitudes of the errors on s or ti are large. 

22.2. Theprobabilify approach. Assuming again that the biases come from a normal 
distribution, the probability of observing the given set of zi values is 
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We then maximize the logarithm of this probability in order to obtain the best es- 
timates of i. and s. The former is given as before by (4), and the best value of s 
is determined numerically. The error on s can be determined by finding the MI- 
ues required to reduce the logarithm of the probability by $ (as compared with its 
maximum value). 

When s B ui, this procedure results in 

5 2  = C(Ti - i.)2/N (9) 

with i. being tile unweighted average. Thus in this limit s2 agrees with the value of 
section 2 2 1 ,  except for the denominator being N rather than N - 1. This k the 
well-known effect that likelihood methods give a biased estimate of the variance of a 
normal distribution. 

For the situation where all the errors ui are equal, the x2  method and the 
probability one also agree (except for the difference between N and N - 1 in the 
denominator). 

Finally for the alternative where the systematic effects are assumed to result in a 
scaling of the statistical errors by a factor K ,  this approach gives 

which again agrees (up to a factor of ( N  - 1 ) / N )  with the corresponding approach 
in section 22.1. 

22.3. Individual bias melhod. This method, which does not require any explicit 
assumption about the shape of the distribution of biases, defines the xz for the 
agreement of observed values zi  as 

where bi is the estimate of the bias for the i t h  measurement, and the weighted mean 
is 

(12) 

The bi are constrained by 

Cbt = ( N  - 

i.e. s is the RMS of the h i .  Then the x2 of ( 1 1 )  is minimized with respect to the bi,  
subject to the constraint (13) for a given a l u e  of s. Our estimate of the overall bias 
is that value of s for which the minimum value of x2 is N - 1 (unless xz is already 
smaller than N - 1 when s = 0, in which case we set the estimate of the bias to 
zero). 

This procedure can he illustrated graphically for the case of two measurements. 
In figure 1, the star represents the true d u e s  of T, and z2, while the measured 
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x, - 
Pigum L Diagram illusmaling the 'individual bias' technique for the case of two mea- 
surements z1 and zz, denoted by the p i n t  P. The true (unknown) value is represented 
by the star. bul any value on rhe Line z1 = 22 would wnstitute a salisfactory solution 
i. The wnslraini b: + b$ = a2 requires (21 - b l ,  22 - b z )  to Lie on the broken circle. 
'hen we Calculate lhe minimum xz for agreemenl between any point on the circle and 
my point on the line: this will select the point P', such that the gradient ol P'P is -1. 
Finally the radius s of the broken circle is chosen so that the minimum x2 is 1. 

values are shown by the point P .  Since the position of the star is unknown, we will 
accept as our solution for the best value i: any point on the line zI = 1,. If we 
correct for the biases 6, and 6,, the measurements would be. moved to (zI - b,, 
z2 - 6,). Given the mnstraint (13), this is required to lie on the broken circle. The 
point on the circle which gives the smallest value of x2 for consistency with any point 
on the 45' line is given by 6, + 6, = 0 i.e. the closest point to the Line. Finally the 
radius s of the circle is chosen such that the minimum x2 is N - 1 = 1. 

For the case where the two measurements are I, f u1 and z2 * U,, the estimated 
bias is 

(14) 
s = - 1 [ I z t  - z21 - JG] 

Jz 
provided that !hi$ gives 5 > n1 

The errom on s are obtained by letting the minimum x2 be. the appropriate 
values, rather than N - 1 (compare section 2.2.1). 

If we believe that the biases on some measurements are inherently likely to be 
larger than those of others, we can incorporate this by modifying (13) appropriately. 
Thus if the biases are assumed proportional to the statistical errors, we muld write 

where now n is our unknown factor to be determined, as in sections 2.2.1 and 2.22 
For the general case of N measurements, minimizing the x2 subject to the con- 

straint (13) results in the following linear equations for the bi: 

where 
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and X is the unknown Lagrangian multiplier. The procedure for finding s is thus 
to choose a value of A, and to solve equations (16) for the b,. This enables us to 
calculate i. from (12) and then x2 from (l l) ,  as well as s from (13). Then we have 
to iterate to find the value of X which makes the minimized x2 equal to N - 1; the 
corresponding value of s is our estimated overall bias. 

22.4. Frohnerk merhod. Frohner [2] has described an elegant Bayesian approach to 
this problem. He writes the joint probability for the answer i: and the bias bi as 

where as usual the possible biases in each experiment are assumed to be Gaussian 
distributed about zero with unknown variances. The extra assumption here is that 
these variances are taken as r f / c ,  where ri is our best guess of the width of the 
distribution of bias for the ith experiment, and c is a common scale factor. The prior 
for this scale factor is p ( c ) d c ,  for which Frohner suggests the form exp(-c)dc. 

Then integration over the b; gives 

Similarly integration Over j. and also over c results in 
"12-1 

p ( b l z , n , r ) - e x p { - $ ( 5 - 6 ) A - ' ( z - b ) }  [ 1 +  ;bB-'b]- (20) 

where we have written z and b for the vectors of the z; and bi respectively, and the 
matrices A and B are defined by 

( A - ' . .  * J  = Jij/u? - l / { u ~ u ~ ( X l / u ~ ) }  

(E - ' ) . .  > I  = 6 . . / r : .  ' J  

(21) 

and 

(22) 

The maxima of equations (19) and (20) give the estimates i. and bi respectively. 
For the latter we can differentiate (20) to obtain the b, as the solutions of 

n + 2  B- 'b  
A - ' ( b - z ) +  - = 0 .  

2 1 + 6 B - L b / 2  

This reduces to 

where Z and b are the 1 
solved iteratively for the b; ,  starting with b; = zi - 3. 

weighted averages. According to Rohner, (24) can be 

We finally estimate s2 as CbT/ (  N - 1). 

The performance of these four methods is described in the next WO sections. 
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3. WO uncorrelated measurements 

We fust discuss the bias estimates provided by these methods for the wry simple 
situation of two measurements with equal statistical errors. We assume that these 
measured values were 10 f 1 and 14 * 1. 

3.1. The xe method 

Since the two U; are the same, our best estimate i. is 12, independent of s. Then 
f” (5) 

which gives s2 = 7. 
AF previously mentioned in section 22.1, this gives the identical answer to that 

obtained from a sim le approach: the estimate of the standard deviation of the two 
measurements is P 8, of which 1 is contributed by the statistical error, leaving a 
systematic error of fi. 

Now we estimate how accurately we determine s. We first require the values of 
x2 for which the fractional area in the remaining tail is 16 or &I%, corresponding 
to thcse beyond the 1 standard deviation points of a Gaussian. For one degree of 
freedom, the relevant values of x2 are 1.98 and 0.041. Substituting these instead of 
the N - 1 = 1 on the right-hand side of (9, we determine the possible range of s 
as 1.7 m 13.9, compared with the central value of fi = 2.6. As we have already 
commented, estimating a spread from two values is not very precise. 

3.2. The probabilily approach 

For this particular example with equal statistical errors, the ‘probability’ approach 
gives the same bias estimates as the x2 method, except that they are scaled down by 
d ( w  = 1/fi. Thus the bias s is given as 1.8, and the range of acceptable 
values is 1.2 to 9.8. 

3.3. Individual bias mefhod 

Equation (14) determines the separate biases b; as ~ 1 . 3 .  For the N = 2 case, the 
estimate of the bias s = &lb,I, and the 68% probability range is 1.4 to 26. (The 
agreement of the bias estimate with that from the probability approach is coinciden- 
tal.) Compared with the previous two techniques, this provides a significantly lower 
estimate of the upper error limit This is due to the fact that, in order to obtain the 
lowest acceptable value of x2 (0.041) in (Il), the b; in the numerator are limited to 
be below half the difference in the observed I, and x2, and hence so is 8 1 6 .  In 
contrast for (3) s is in the denominator and has to become large in order to make x2 
suitably small. An equivalent remark applies also to (8) of the ‘probability’ method. 
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3.4. Frohner’s method 

In this case we investigate the more general situation of two measurements i o  f 1 
and I, f 1, where x 2  is in the range 11 to 20. As in the ‘individual bias’ method, 
b, = -b,  and j. = (1, t 10)/2.  

Several problems become apparent: 
(i) Iteration with (24) gives problems concerning convergence. This is acute when 

z, - 10 is small, and for small r (see table 1). It is not significantly alleviated by 
choosing a better starting value of b. 

(ii) For this simple problem, it is not necessary to use (24), but we can evaluate 
p in (20) as a function of b, in order to find the maximum. Then we can plot b, as 
a function of T .  This is shown for x, = 12, 14 or 15 in figure Z(a). We see that our 
estimate of the bias varies with r; at low r ,  b, - 0, while for large d u e s  it tends to 

(iii) At larger values of r2  and at small T ,  there are three solutions of (24). Of 
these two correspond to maxima of p .  and one is a minimum (see figure 3). We select 
as the bias the one which gives the larger maximum. The iterative solution of (24) in 
this region often mnverges on the wrong maximum. Furthermore at some value of T ,  

the solution for 6, jumps from the lower branch to the upper one (see figure q b ) ) .  

(x2 - 10)/2.  

I r lbl 

b7 I :: 0 

Figure 2. The bias b2 as a function of r, for measurements 10 f 1 and z f 1 ,  where 
z b as specified on the cuwcs. The a w e s  correspond to lhe positions of a p l a b  = 0, 
with p as given in (20). A1 large r. b? always lends lo (z.2 - z1)/2. For lhe values 
of 2 2  as shown in (o), b2 grows monotonically with 7 .  For z2  = 15.5. the funclion p 
display two maxima for r - 0.4, and for z2 > 1 0 + 4 f i ,  this region exlends down lo 
r = 0. with the mwe of b2 as a function of r splitting into WO. Tne larger maximum 
stam on lhe lower a w e  and then jumps lo lhe upper one for larger r ;  this m u m  a1 
r .. 0.42 for z2 = 15.5, and a i  r - 0.31 lor z2 = 16. For z2 larger than 16, lhe 
area of the lower portion of Ihe CUNe shrinks. and the range of bz values mvered by 
the upper prl of the cuwe also decreases. 

In fact the situation is not quite as bad as at first appears, provided 11, - xI I and 
T are not too small. Thus for x2 = 16 and T > 0.5,  the range of b, is from 2.05 to 
3 (for T = CO). For larger x,, the range of b, is even smaller. 

The results of these methods are summarized in table 2 
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Table 1. Convergence of the Fmhner melhcd. m e  Fmhner mclhcd, applied lo nu0 
measuremenls 10 f 1 and 22 1. Equation (24) is solved iteratively for lhe bias, with 
values of r / D  as shown, where D = z2 - 10. The region shown by lhe N s  and below 
is where iteration fails to mnverge, while Ihe Ys and above m m p n d  lo salisfacloly 
mnvergence. ?he Ws indicate mmbinalions of z2 and 7 where ileralion mnverges U) 
the wmng maximum. 

z2 I1  12 13 14 IS 16 17 18 19 

710 
2 
I 
0.5 
0.2 
0. I 
0.05 
0.02 
0.01 
0.00s 
0.001 

Y 
N Y  

N Y  
N Y  

N Y  
N Y Y  
N W W Y  
N W W Y  
N W W W Y  
N W W W W  

Table I Estimated biases for the differen1 techniques, for measurements 10 f 1 and 
14 + 1 .  with uncorrelated Yalistical erron. 

Method Besl value of s Lower limit Upper limit 

X* 2.6 1.7 13.9 
Probability 1.8 1.2 9.8 
Individual bias 1.8 1.4 2.6 
Fmhner See figure 2 

(3 = f i b 2 1  

4. Monte Carlo tests 

In order to investigate how these procedures behave in more complicated cases, we 
have performed Monte Carlo simulations of N independent measurements of the 
same quantity, each subject of random and systematic errors. The true value of 
the quantity is assumed to be unity, and the separate measurements are smeared 
by Gaussian distributions of widths specified by their individual random errors ui. 
Finally each of these results is moved by its bias, which we have taken from another 
Gaussian distribution of width Bin. Then we have estimated the bias by using the 
four methods described above. For each method, we also calculated the best estimate 
i!. 

The generation of the set of N independent results was then repeated a further 
49 times, in order to find the average value of the square of the calculated bias and 
its error for each technique. We have also obtained for each method the average 
value of the weighted average, and the width of its distribution, in order to see which 
technique provides the best estimate of the quantity we are trying to measure. In these 
50 repetitions, the numerical values of each of the N assumed biases could either 
be kept at the values they had for the first set; or else they could be recalculated 
from new random numbers for each of the M sets. We have adopted the second 
alternative. 

Finally the whole procedure was performed for a variety of Bin values, in order 
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1.1 T = 0.25 

-IO 
0 1 2  3 

bl- 

Figure 3. The logarithm 01 lhe probability p as a function of Ihe bias bz, lor different 
values of r ,  and for WO measuremcnls 21  = IO f 1 and 1 2  = 16f 1. (The absolute 
sale of In p is arbitrary.) At low r there are lhree stalionary  value^. In (0) the largest 
value is lhe maximum at lower b l ,  while in (b) il has moved to he higher b z .  At even 
larger T ,  mere is a single maximum. which moves towards bz = 3 as T increaser. 

n b k  3. Sutislical erron used in Monte Carlo CaIcuIalion. 

Measurcmcnl no Number of wcnts Slatislial ermr 

I IO00 0.032 
2 a000 0.022 
3 MO 0.058 
4 500 0.W5 
5 I00 0.100 
6 I000 0.032 
7 20 0.224 
8 700 0.038 
9 4w 0.050 

10 M 0.141 

to see how the performance of each method depends on the magnitude of the bias. 
We now present the results for N = 10, and with the magnitudes of the statistical 

errors as shown in table 3. For the chosen values, the statistical error on the weighted 
mean is 0.013. In figure 4, the estimates of the output bias for the tested methods 
are shown. Several features are apparent: 

(i) For very large E,, all methods converge to approximately the correct value 
of the bias (to within a factor of Jm for the probability method). The 
‘individual bias’ method has the slowest approach to the correct value. 

(ii) For very small E,, all methods as expected overestimate the bias. This is 
simply because we are unwilling to accept estimates of the bias that are negative. 

(iii) For intermediate Bin, the ‘individual bias’ method produces estimates Of the 
bias that are significantly below E,. This seems to be related to the fact that for two 
measurements, the bias is given by equation (14), rather than the expected form of 
(1). 



On estimating systematic errors from repeated measurements i9n 

0.01 

€ 

/ 
/ o  

/ 
/ 

/ 
/ 

/ 
- /  
/ ' ' ' ' ' " '  I J 

! L  f X '  
o Pvobability 

0 Individual bias 

t 
f 

(iv) For intermediate E,, the 'probability' method produces better estimates of 
the bias than does the xz method. This is in part a reflection of the Jm 
bias of the 'probability' method, which becomes increasingly important at small B,, 
and which compensates partially for the positive bias discussed in (ii). 

(v) With 7 k e d  at 0.4, the Frohner method behaves well for B, > 0.1. Below 
that, r = 0.4 makes the bias estimate significantly larger than B,, while smaller 
values of r give problems with the convergence of the iterative solution. 

At any given value of Bin, the widths of the distributions of the best estimates 
i: of each of the methods are barely distinguishable, provided that in the Frohner 
method T is reduced to be comparable to E,. (The problem of convergence applies 
only to the bias estimates, and not to that of ?.) In figure 5, they are compared with 
those for the unweighted mean, and the usual weighted mean (i.e. (4), with s = 0). 
It is seen that, as expected, the best estimates' widths lie either on or below those for 
the unweighted and the usual weighted mean. They tend to the unweighted mean at 
large Bin (when the individual statistical errors are irrelevant) and to the weighted 
mean at small Bin. 

We show in figure 6 how our estimates of the individual biases bi for the Frohner 
method "pare with the input values, in a couple of typical cases, for large E,. The 
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l.o € 
t :  

Width 

0 1  

o,03 

- 

7 

/ 
I , 

0 01 I I d 
0001 0 01 0 1  I O  

6," - 
Figure S. The widths of tlie distributions of k t  values 2,  BS functions of the input bias 
Bin, for the unweighled average (dolled a"), weighted average @"en N W ~ )  and 
the methods of section 2.2. The latter methods give indistinguishable widths, and are 
shown as tlie full curve. 

fact that the pints tend to lie along a line at - 45O is as expected. Fbr smaller values 
of the bias B,, the correlation between the individual output and input biases is not 
so pronounced as for larger values of Bin, because of the relatively larger importance 
of the statistical errors. 

, ] .  -1 , L:/ ~ . ; *  
. . 

-1 

.. -1 -1 

I" - . I" - . . ii" .. -1 I" - y . -1 I" - 
Figure 6 Plots of the ten individual output biases ('Calc') againsl the actual values of the 
mrresponding individual biases ('in'), for WO separate sets of ten measurements. The 
'In' values are from a random Gaussian distTibution with B;. = 1; the 'Calc' values are 
as oblained for the Fmhner method with 7 = 0.4. The strong mrrelation arises because 
the biases are much larger than the statistical errors Because a mmmon bias cannot be 
detected by any of our methods, lhe line along which the p i n u  tend U1 lie will not pass 
through the origin i f  lhe average of the 'In' values happens to be significantly non-zero 
(see right-hand diagram). 

We have repeated the Monte Carlo tests of the four methods for the situation 
where all ten measurements of a single experiment have equal statistical errors of 
k0.032. The major difference as compared with the case of unequal errors discussed 
above is that s provides a better estimate of Bin down to smaller values. Thus for 
E ,  = 0.01, which is equal to the statistical error on the mean, s = 0.016 i .002 
for the x2 method, and 0.033 ,001 for the Frohner technique with T = 0.4. 
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5. Conclusions 

We have discussed in some detail the problem of extracting estimates of the systematic 
error from a repeated set of measurements of the Same quantity, where the statistical 
errors are specified. 

Four different methods for extracting the bias are described (the xz method, the 
probability approach, the individual bias technique and the Frohner method). Theu 
analytic properties in simple situations are derived, and their performance for a more 
general situation is investigated in detail by a Monte Carlo method. It is found that 
the ‘probability’ method described in section 2.2.2 provides a reasonable estimate of 
the bias for the case of ten independent measurements, provided the bias is larger 
than the statistical error. For lower values of the bias, the estimates for all methods 
are larger than the input values of the bias; this arises simply because the estimated 
biases are forced to be positive or zero. 

For smaller numbers of measurements, the bias of the ‘probability’ method is un- 
derestimated by a factor of - , / ( N  - l ) /N,  and then the ‘xz method’ is preferable. 

The Frohner method, which is very appealing because of its more rigorous ap- 
proach, requires a value of r for each bias. With r small, there are problems of 
convergence and of multiple solutions; large T produces estimates of s which are 
higher than the input values Bin, unless E ,  is large compared with the statistical 
errors. 

All methods give very similar accuracies for their estimates of the best value of 
the parameter of interest. 

It is hoped that anyone attempting to estimate biases from the spread of a re- 
peated set of measurements will be encouraged to test the reliability of their method 
by using the Monte Carlo methods described here, but with the parameters adapted 
to their particular results. 
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